Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging
نویسندگان
چکیده
PURPOSE The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). MATERIALS AND METHODS A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99mTc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. RESULTS The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. CONCLUSION Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL-MRI as debated in brain imaging.
منابع مشابه
Can Arterial Spin-Labeling with Multiple Postlabeling Delays Predict Cerebrovascular Reserve?
BACKGROUND AND PURPOSE The effect of delayed transit time is the main source of error in the quantitative measurement of CBF in arterial spin-labeling. In the present study, we evaluated the usefulness of the transit time-corrected CBF and arterial transit time delay from multiple postlabeling delays arterial spin-labeling compared with basal/acetazolamide stress technetium Tc99m-hexamethylprop...
متن کاملArterial transit time imaging with flow encoding arterial spin tagging (FEAST).
Arterial spin labeling (ASL) perfusion imaging provides direct and absolute measurement of cerebral blood flow (CBF). Arterial transit time is a related physiological parameter reflecting the duration for the labeled spins to reach the brain region of interest. Most of the existing ASL approaches to assess arterial transit time rely on multiple measurements at various postlabeling delay times, ...
متن کاملArterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects.
Arterial transit time (ATT), a key parameter required to calculate absolute cerebral blood flow in arterial spin labeling (ASL), is subject to much uncertainty. In this study, ASL ATTs were estimated on a per-voxel basis using data measured by both ASL and positron emission tomography in the same subjects. The mean ATT increased by 260 +/- 20 (standard error of the mean) ms when the imaging sla...
متن کاملA theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging.
Under ideal conditions, continuous arterial spin labeling (ASL) techniques are higher in SNR than pulsed ASL techniques by a factor of e. Presented here is a direct theoretical and experimental comparison of continuous ASL and pulsed ASL, using versions of both that are amenable to multislice imaging and insensitive to variations in transit times (continuous ASL with a delay before imaging, and...
متن کاملQuantifying CBF with arterial spin labeling.
The basic principles of measuring cerebral blood flow (CBF) using arterial spin labeling (ASL) are reviewed. The measurement is modeled by treating the ASL method as a magnetic resonance imaging (MRI) version of a microsphere study, rather than a diffusible tracer study. This approach, particularly when applied to pulsed ASL (PASL) experiments, clarifies that absolute calibration of CBF primari...
متن کامل